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Introduction
WHAT IS COMPOSITENESS AND HOW DO WE FIND IT?
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Compositeness is the idea 
that quarks and leptons are 
made up of even smaller 
particles

These smaller particles are called preons.
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 : Compositeness Energy Scale

• Similar to the energy that it takes to pull quarks apart into preons

• Energy at which we can detect evidence of

compositeness
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What Compositeness Predicts

• Contact Interactions (CI)

• Instead of transferring a particle, 
preons make direct contact with 
each other 

• Quark and antiquark each give a 
preon, which interact to give a muon 
and antimuon

• If CMS finds CI, this shows that 
compositeness exists
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Background: Drell-Yan

• Drell-Yan (DY) process is the main 
background

• Also has 𝑞 𝑞 →  

• Cant see Z/*

• Find other methods to differentiate
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Methods
HOW DO WE USE COMPUTER SIMULATIONS TO LEARN ABOUT CONTACT INTERACTIONS?
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Invariant Mass 
Spectra
CI makes more high mass events 
than DY 

Invariant mass is related to energy
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 : Compositeness Energy Scale

• Similar to the energy that it takes to pull apart quarks into preons

• Energy at which contact interactions occur

• Unknown

• Different values of  predict different signals for CI
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Invariant Mass 
Spectra
If  is high, there are fewer high mass 
events and the invariant mass 
spectrum for contact interactions is 
hard to distinguish from that of the 
Drell-Yan process.

Need to look at high mass events to 
see the difference
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Limiting 

• Want to find highest  that we would be able to differentiate from DY given our 
systematics and number of events

• Look at background to signal ratio (r) 

• If r = 1, can’t tell apart background (DY) and signal (CI)
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Limiting 

 = 19.01 TeV

r vs. 

13





-

+

z

x

Collins-Soper Frame 
Angle 

Not symmetric around zero (more positive 
events than negative ones)

LL and DY look similar, but LR looks different

This difference is more exaggerated at higher 
mass events

25k events per line
 = 14 TeV
Minimum mass cut of 400 GeV
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Forward-Backward Asymmetry

• Measure of cos asymmetry around zero

𝐴𝐹𝐵 =
𝑁𝐹−𝑁𝐵

𝑁𝐹+𝑁𝐵

𝑁𝐹 = number of events with cos() > 0

𝑁𝐵number of events with cos() < 0

• CI (signal) and  DY (background) are most 
differentiable at high mass events, so we 
plot 𝐴𝐹𝐵 as a function of mass
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Concluding Remarks
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Limiting 

 (TeV) 16 17 18 19 20 21 22 23 24 25

CI Yield (events) 92.741 80.183 75.120 70.202 68.155 65.725 62.493 62.181 60.874 64.157

DY Yield (events) 52.095 52.095 52.095 52.095 52.095 52.095 52.095 52.095 52.095 52.095

Difference in Yield 
(events) 40.645 28.088 23.025 18.106 16.060 13.630 10.397 10.086 8.779 12.062

r = noise/signal
(expected) 0.440 0.635 0.777 0.988 1.113 1.316 1.719 1.773 2.039 1.481

 = 19.01 TeV



Collins-Soper Frame Angle 

• Tells us about the “angular distribution” 
of the muons’ momentum

• This distribution is different for 
different models of compositeness

• One of these models has a different 
distribution than the background does

• But what is this angle?
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Collins-Soper Frame 
Angle 

Two Lorentz boosts:

1. Proton center of mass frame to * frame

o Boost along z-axis

o Eliminate muon z-momentum 

2. * frame to center of mass frame of dimuon 
system (Collins-Soper frame)

o Boost along opposite direction of muon transverse 
momentum (QT) 

o Eliminate rest of muon momentum 

 Is the angle that the muons make with the z-
axis of the Collins-Soper (CS) frame

1

2
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C C

13



Collins-Soper Frame Angle 

Lab Frame Collins-Soper Frame

Proton 1 Proton 2

Lepton +

Lepton -
Total lepton
momentum

 Is the angle that the muons make with the z-axis of the 
Collins-Soper (CS) frame

Lepton +

Lepton -

*Nagashimi, Elementary Particle Physics



Collins-Soper Frame Angle 

• Want to be able to calculate it in of lab frame variables

• Things the CMS detector can directly measure from its point of view
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Forward-Backward 
Asymmetry
Sea quarks have less z momentum than valence 
quarks

Valence quarks: up, down quarks that “make up” 
structure of proton

Sea quarks: quarks that briefly pop in and out of 
existence within the proton

Antiquark always comes from sea (no anti 
valence quarks)
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Workflow
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19



Importance of Simulation

• In order to properly analyze real data when it is available, need to understand what we 
would expect to see in every scenario

• This study was entirely simulation based 

• Verify software works before simulate whole detector

• Develop analysis methods using simulated data and then use them on real data

• Know what we expect to see, provides objective checks
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Goals

SHORT TERM (SUMMER)

• Gain strong understanding of backgrounds

• Strengthen methods to look for signal

• Create and analyze simulation against which 
to compare real data

• Verify software in order to submit full-
detector simulation request

• Develop statistical tools to use for later 
analysis of real data

LONG TERM (CMS’ FUTURE)

• Find evidence for compositeness 

OR 

• set a strong lower limit on the energy scale 
at which it will be detectable
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